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Abstract
We predict that when light is reflected off a magnetic photonic crystal (MPC)
there is a grazing component that is parallel to the surface; the magnitude of this
component can be changed by an external field. The direction of this parallel
component is reversed as the direction of the magnetization is reversed. This
provides a way to probe states with macroscopic circulations inside the MPC.

Over the last ten years there has been much activity on the Hall effect for electrons in
heterostructures in which a longitudinal voltage induces a transverse component of the
electrical current in the presence of an external magnetic field. This is motivated by the novel
physics due to the breakdown of time reversal invariance. The Hall current is believed to
be carried by edge states with macroscopic circulations. As regards the transverse motion
involving electromagnetic (EM) waves, the skew scattering effect was first discussed by Rikken
and co-workers [1], while the manifestation of the side jump was recently discussed by Onoda
and co-workers [2].

Concurrently, there has been much activity studying the effects of resonances on the
propagation of EM waves. This includes such phenomena as negative refraction, and the
slowing down and the storage of light. In this paper we investigate if a scattering resonance
that lacks time reversal symmetry can create novel effects on the propagation of EM waves in
magnetic photonic crystals (MPCs). We predict that in the presence of an external beam on an
MPC (figure 1 solid line), there is a grazing component of the reflected beam that is parallel
to the surface of the MPC (dashed line). The magnitude of this grazing component can be
changed by an external field. The direction of this parallel component is reversed (dotted line)
as the direction of the magnetization is reversed. This provides for a way to probe states with
macroscopic circulations inside the MPC. The effect we described is different from the Goos–
Hanchen effect [2, 6] in which the mean position of a wavepacket is shifted upon reflection.
In the present effect, the direction of propagation becomes parallel to the interface. We now
describe our results in detail.

Our conclusion depends on the magnetic photonic band structure. To illustrate the essential
physics we consider a two-dimensional (2D) MPC of a triangular array (lattice constant a) of
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Figure 1. Figure illustrating the geometry
of the effect. For an incident beam (solid
line) there is a reflected beam parallel to the
surface (dashed line). This grazing component
will reverse direction (dotted line) when the
direction of the magnetization is reversed.

magnetic cylinders with the magnetization M0 along the axis. We expect similar effects to
be manifested in MPCs of different dimensions. We first consider the scattering off a single
magnetic cylinder. The magnetic susceptibility tensor and its inverse are given by [3]

μ̂ =
[
μ −iμ′ 0

iμ′ μ 0
0 0 1

]
, μ̂−1 =

[ d −ib 0
ib d 0
0 0 1

]
, (1)

where μ and μ′ are of a resonance form: [3]

μ = 1 + ωm(ω0 + iαω)

(ω0 + iαω)2 − ω2
, μ′ = − ωmω

(ω0 + iαω)2 − ω2
,

with a spin wave resonance frequency ω0 = γ (Hext + H0) that is determined by the sum of an
external field Hext and the anisotropy field H0; γ is the gyromagnetic ratio. d = μ/(μ2 −μ′2),
b = −μ′/(μ2 − μ′2). The damping is controlled by a coefficient α [3]. For zero damping
the diagonal element of the inverse susceptibility becomes zero (d = 0) at a frequency
ω1 = [ω0(ω0 + ωm)]1/2, where ωm = γM0 measures the coupling strength of the magnetic
material with the EM waves. We are interested in solving Maxwell’s equation,

(�− εq2
0 )E(r) = 0, (2)

where

� = ∇ × μ−1∇ × .

Here q0 = ω/c. For a single cylinder, equation (2) can be solved in cylindrical
coordinates [4, 5]. There are two types of polarization, with either the electric (E mode)
or the magnetic field (H mode) parallel to the cylinder axis. The wavevectors inside are
k1 = (ε/d)1/2q0 for the E mode and k2 = ε1/2q0 for the H mode. By matching the tangential
components of E and H at the boundary, the scattering phase shift δm for the mth angular
momentum can be obtained. The tangent of the scattering phase shift is found to be

tan ηE
n = J ′

n(q0 R)k1 J − (b n J/(dx1)+ J ′)Jn(q0 R)q0ε

q0εNn(q0 R)(b n J/(dx1)+ J ′)− k1 J N ′
n(q0 R)

(3)

for the E mode, with x1 = k1 R, J = Jn(x1), and J ′ = J ′
n(x1). As can be seen, because b �= 0,

when the sign of n is changed, the phase shift is changed. To illustrate the essential physics,
in this paper we focus here on results for polarization with the electric field along the cylinder
axis.

We consider an MPC located at x > 0. To illustrate, we consider an incoming beam at
perpendicular incidence given by Ei = exp(ikx). The wavevector parallel to the interface
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(along y) is conserved up to a reciprocal lattice vector Kn. The reflected beam is a sum of plane

waves of different wavevectors given by qr = (qnx, Kny); qnx =
√

k2 − K 2
ny . When Kny > k,

qnx is imaginary and the corresponding Fourier component is localized near the interface.
For a non-magnetic photonic crystal, the amplitudes of the modes with qr = (qnx, Kny) and
q′

r = (qnx,−Kny) are equal. These two components together form a standing wave, and their
contribution to the reflected wave is non-propagating. For an MPC, this is no longer true. The
amplitudes of the two modes are not equal and the mode parallel to the interface becomes
propagating.

There is another way to think of this phenomenon. Around a magnetic cylinder, the EM
field can be expanded in a series of cylindrical vector basis functions Mm , Nm , with different
z-component of the angular momentum m. The phase shifts for the +|m| mode and the −|m|
modes are different and they exhibit resonances at different frequencies. When the cylinders
are assembled to form an MPC, the resulting mode will look approximately like a linear
combination of scattering states from each of the cylinders. Each of the functions Mm(r) is
proportional to exp(imφ) and behaves like a small eddy. The sum of the eddies from each of the
sites thus behaves like a giant circulation. In the study of the quantized Hall effect in electronic
systems, the current is believed to be carried by edge states with macroscopic circulations. The
circulating modes discussed here also exhibit macroscopic circulations. For the current system,
these modes are excited by an external beam. The ‘surfing’ component of the reflected beam
now provides for a way with which one can probe these states with macroscopic circulations.

To describe this phenomenon quantitatively, we have developed a Green’s function
formalism with which we can calculate the reflectivity. As far as we know, there has been no
previous treatment of the reflection problem in terms of Green’s functions. With this approach,
one can directly relate the reflectivity to properties of the bulk system: we can relate the
asymmetry of the reflected signal to the asymmetry of the Green’s function of the MPC. In
addition, the results are not clouded by the existence of another interface, which is always
present in a finite-size numerical calculation. Following standard practice [8]3 we find that the
electric field inside the MPC can be expressed in terms of its value at the surface through the
integral equation

E(r) = −
∫

dS · {[
μ−1∇ × E(rS)

] × G(r, rS)
∗ − [

μ−1∇ × G(r, rS)
]∗ × E(rS)

}
, (4)

where G is the Green’s function of the MPC: (�′ − εq2
0 )G(r, r

′) = δ(r ′ − r). Here we have
used units such that the speed of light c = 1. For the symmetry described here, at the boundary
of the MPC the E field inside is the same as that in free space outside, which in turn is a sum of
an incoming field Ei exp(ik ·r) and a reflected field Er (r). The derivatives of fields in the free-
space side can be easily obtained from the free-space Maxwell’s equations. We can calculate
Er in terms of Ei by solving equation (4). More precisely, for the reflection problem, there
is translation invariance along the interface. We write the reflected wave as a Fourier series:
Er/Ei = ∑

j er j exp(i(ky + K j )y − ikx j), where kx j = √
ω2 − (ky + K j )2. Equation (4)

becomes

δ j,0 + er j =
∑

l

i(kxl er,l − kxδl,0)G̃( j, l)− (∂x G̃( j, l))(δl,0 + er,l). (5)

Here G̃ indicates the Fourier transform of G in the direction parallel to the interface.
As is explained below, we find that

G̃kx (r, r
′) = −π iE∗

jk0
(r>)E jk0(r<)/[ε(∂kyω jk0 )ω], (6)

3 We have used the fact that μ∗
ab = μba and (μ−1∇ × E) · ∇ × G∗ = (∇ × E) · [μ−1∇ × G]∗.
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Figure 2. The tangential Poynting vector
(solid line) of the reflected beam, and
the reflectivity as a function of ω0.
ωa/(2πc) = 0.565. R/a = 0.25, ωm =
5c/a.

Figure 3. Photonic band structure for
E modes with R/a = 0.25, ω0 =
2.485 c/a, ω0/ωm = 0.497, α = 0 and
ε = 2.25. The flat-band region is shown
with an expanded scale on the right.

where k0 is determined from the constraint that ω jk0 is equal to the frequency of the incoming
radiation. Our effect depends on the difference of the reflected beam of opposite y crystal
momentum: er, j − er,− j . As can be seen from equation (5), this comes from the asymmetry
of G̃, which from equation (6) in turn arises from the asymmetry of E jk0 . In general, one can
write the electric field as E jk0 = ∑

n fn(r) exp(inφ). The asymmetry ultimately comes from
the change of E as φ is changed to −φ. The larger the difference tan ηn − tan η−n , the larger
the difference fn − f−n , and the stronger the surfing mode will be. This happens, for example,
when a scattering resonance occurs for one of the modes.

With this technique, equation (5) can be solved and Er/Ei is calculated; the Poynting
vector of the reflected beam in the direction tangential to the interface for different values of the
magnetic field (through ω0) is evaluated. In figure 2 we show, for perpendicular incidence, the
total integrated value of the Poynting vector normalized by the Poynting vector of the incoming
radiation. Instead of showing a Poynting vector rapidly changing with energy, we have focused
on energies close to a band gap (see figure 3, right panel) in the ‘flat-band’ region where the
phase shift is rapidly varying (see figure 4, middle panel) and display our result in an expanded
energy scale. Also shown is the reflectivity. As expected, the resulting Poynting vector is non-
zero. As the band gap is approached, the reflectivity is increased, and this tangential component
is increased even more. The magnitude of this component is big enough that it should be easily
measurable experimentally.

To better appreciate the reflectivity we show in figure 3 the photonic band structure
for the E modes for ω0/ωm = 0.497 along symmetry directions from � = (0, 0) to
M = (0, 2π/

√
3a) to K = (1/3, 1/

√
3)2π/a and back to �. There are many flat bands below

ω1 = 0.68(2πc)/a where the phase shift changes very rapidly. A band gap in this flat-band
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Figure 4. Phase shifts for the E modes for
n = 0, 1 and −1 modes, with the parameters the
same as in figure 3. The radius of the cylinder
is R = 1

4 (2.485 c/ω0).

region is shown with an expanded scale in the right-hand panel. The dashed line corresponds
to the frequency 0.565 (2πc/a) that we focus on in figure 2. As ω0 is increased, the band gap
is approached and the reflectivity is increased.

The phase shifts for the E mode as a function of ω are shown in figure 4. A vertical
dashed line is drawn at the frequency 0.565 (2πc/a) that we focused on, corresponding to the
horizontal dashed line in the right-hand panel of figure 3. At this frequency the phase shift η1

for the n = 1 mode is near the resonance value of π/2, and is rapidly changing as a function of
frequency. We thus expect states with strong macroscopic circulations to occur around there.
As we explain below, rapidly varying phase shifts lead to flat bands. Note also that η−1 �= η1,
as we expected of magnetic systems.

The equation determining the band structure is det[H ] = 0, where the matrix Hm,m′ =
A(m−m ′)+δm,m′ cot ηm, is a function of the wavevector k and the circular frequency ω = ck0;
A is the structure factor. Near ω1, the change of the phase shift as the frequency is changed is
given by cot ηH

n (ω + δω) = cot ηH
n (ω) + δωXn , where Xn is of the order of (∂d/∂ω)/d3/2.

The change of the i th eigenvalue of H can be estimated from first-order perturbation theory as
δλi = 〈ψi |Xn|ψi 〉δω with G|ψi〉 = λi |ψi〉. Hence, λi + δλi = 0 for δω = −λi/Xi . Since Xi

approaches ∞ near ω1, δω approaches zero there. Thus rapidly varying phase shifts lead to flat
bands.

The band structure near the flat-band region is shown in an expanded scale on the right-
hand side. The frequency that we have picked corresponds to the onset of the flat-band region
where we expect states with strong macroscopic circulations. Indeed, there is an increase in the
surfing component as the flat bands are approached.

We next discuss the more formal aspect of the present calculation. The Hall conductivity
is related to the off-diagonal part of the velocity autocorrelation function, which in turn can be
expressed in terms of functions of the expectation value of the position operator ∇k [10]. The
Poynting vector we calculated can be related to the expectation value of the velocity operator
∇r, the conjugate of the position operator. To illustrate, we take the geometry of our calculation
here. Then Sy = ∫

dy cE∗
z Hx/(4π). These EM fields are in the free-space side and they satisfy

the free-space Maxwell’s equation. In particular, we get, for our symmetry, −iωBx = ∇y Ez .
We thus get Sy = ∫

dr iE∗
z k × ∇r Ez/(|k|μ0k04π), as claimed. Just as time reversal invariance
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affects the symmetry of the position operator, the symmetry of the velocity operator is also
affected. Thus even though ky = 0, Sy �= 0. The physical quantity discussed here does not
seem to be the same as the conductivity studied in the Hall problem, however.

We close with a description of the calculation of the Green’s function in equation (6). A
commonly studied object in band calculations is the periodic Green’s function gk defined by
(�′ − εq2

0 )gk(r, r ′) = ∑
R exp(ik · R)δ(r ′ − r − R) and which can be written in spectral

representation in terms of the solution E jk and the eigenvalue ω jk of the j th photonic band as

gk(r, r
′) =

∑
j

E∗
jk(r)E jk(r

′)/[ε(ω2
jk − ω2)], (7)

with the property that gk(r + R, r ′) = exp(ik · R)gk(r, r ′);
(�− εq2

ik)Eik(r) = 0.

The photonic Green’s function of interest is the Fourier transform of G along the interface.
This Fourier transform can be related to the periodic Green’s function gk by G̃kx = ∫

dky gk .
This integral can be carried out with contour methods4.

In this paper, we have focused on the reflected beam; we expect that a similar effect will
also be manifested in the transmitted beam. Effects due to the non-reciprocity in magnetic
photonic crystals have been discussed recently by Figotin and Vitebsky [11]. These authors
assumed that the frequencies of the states at k and −k are different. For the present case, the
frequencies are the same. However, the average helicity of the states at k and −k are different.
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